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A direct analogy is established between
and doublet distributions in the solution of

FL&

Lomax

the use of source-sink
arbitrary boundary value

problems in subsonic wing theory and the corresponding problems in
supersonic theory. The concept of the “finite part” of an integral
is introduced and used in the calculation of the improper integrals
associated with supersonic doublet distributions. The general
equations developed are shown to include several previously pub-
lished results and particular examples are given for the loading on
rolling and pitching triangular wings with supersonic leading edges.

INTRODUCTION

The pro~lem of finding pressure distributions over airfoils of
arbitrary shape and plan form or of finding airfoils which have
arbitrary pressure distributions is one of the most fundamental
problems in aerodynamic theory. At the present tizm the most
important and satisfactory approach to problems of this type is
provided by the methods of se-called thi=irfoil theory. The m
essential assmnptions in this theory are that the perturbation
velocities induced by the airfoil are SMU relative to the free-
stream velocity and that the boundary conditions can be specified
in a fixed reference~lane.

Under the assumptions of thi~irfoil theory the theoretical
analysis of a problem in wing theory resolves itself into the task
of determining the solution of a second+rder linear prtial
differential equation with prescribed boundary conditions. In the.
case of purely subsonic flow, Laplacels equation in ,threedimensions
must be considered, while in purely supersonic flow the differential
equation which arises is algebraically equlvalbnt to the twc+

. dimensional wave equation of mathematical physics. The clasaical
solutions of these two equations have been developed along two
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distdnot lines; first by use of orthogonal.fuuotions which oan be
derived in terms of the boundaq conditions, ~d alternatively by
mesas of Green8s theorem whloh In turn utilizes a mown pa&tio@
solutia of the partial differential equation together with the
@v’en boundary cmndlthns .

Qne parttoulsx solutlcm associated with I@laoe ia equation and
subaonio emmdymmicm has leen f’oundto be outstanding In its
mathenmtioal usefulness and, when identified with the velooity
potiential~has a physioal interpretationwhioh oan supply, in direot
Wplioatlon, added insight into the nature of the problem. !l!his
function is refened to as the ‘fundamental solutlcmw and can be
developed fran the oonoept of a s~alled souroe. A conoomitaut
development to the souroe potential.is the doublet potential, and
appropriate Ustrtbutions of these funotions are known to be
suffloient for the solution @ all problems in subscmio wing theo~.

The extension of the use of the fundamental solution to problems
In purely supermznio flow titroduoes mathematical cliffIoulties whioh
differ eewentially from those encountered at low speeds. Both the
souroe and the doublet potentials possess singularities on their
oonicml oharaoteristio surfaoes or Maoh oones and, ,tithe ease of
the doublet, the singularity Is of hi@er order than OSZIbe treated ,
by elementary mathematical methods. h the historical development
of the solutions of the usme equation this trouble was oirmmventea
by replaoing the souroe potential by other particular solutions of
the differential equation. As an exe@.43, Volterra (referenoe 1)
lntmduoed the integral of the fundemen&l solutim and h that wdy

reduoed the order M the singularities involved. The analytical
develqment of Vtiterra$s theorypwments no jmherent cliffimzl.ties
(e.g., referenoe 2) but the phy#lcel f3i@ficanoe of the particular
solution is lost, the direot analogy with subsonio theory no lon#r
exists, end a oertain amount of mathematical ineffioienoy arises
sinoe, after using the integral of the souroe potential, it is
found neoessary to resort at the end of the analysis to taking a

,find derivative.

b this report2 following methods Intioduoed by Eadsmard
(refemme 3), a ~ral solution to the Iih-irfoil problm
in iaupersauiotheory will be given in tezms of the dlstmibution of
smroes and doublets over the given referenoe plane. Furthermore,
a discussion of the nature of the boundery values required will be
given. For properly set problems in wave theory it has been found
neoessary to speoIf’y,usually, both the req’ulredI%ncrtionand its
+rlvqtive with respeot to time almg the boundary considered. In
aerodynamic applications of the wave equatim assooiated with
lifting surface theory and thiolmess dlstrlbuthns it will be shown
that * a lmowle@9 of the *own funotion or its normal.
derivative along the boundary is needed since a relaticmship between

.
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the two funotirms will be established an lib boundary surfaoe.

M the theoretical portion of the report a brief presentation
wiJJ be made of tie clifferential equations involved end the two fozms
of thesfwdsmentsl solutlm. An outline is then given of the *es
of boun~ velue problems encountered and, since the purpose of the
report Is ta extend the oonoepts of thin-airfoil theo~ whioh am
used.in subsw3ic theory to problems erising in supersonic theory, a
disousslon uill be given of We mibsonio developumt as a basis for
the snalo~ whioh exists between tie meiihedsof solutfcm corresponding
to the two regimes af flow. In the disousslon of tie pure- supermnid
ease it will be shown that the introduoticm of the oonoept of
“finite part” will provide a technique whereti~ the improper titegmb
arising frm the use of doublets my be evaluated in a strai@li-
forwaxd manner. The applioatims of ths Iiheoretiosldevelopments
will include the rederivation of some previmsl.y published results
and will also oozrtainthe oaloulation of load distributions for
rolling and pit.ohingtrkngular wings with leading ed~s swept khead
of the Maoh oona from the vertex of Mm trian@.es.

SYMBOIS

b

o

M

n

nl ~a~,ns

P

Q

1
F

spell & w-
.

ohord of wing

free+ tream Maoh nudber

normal to mb itrq surfaoe

&eot2xa oosines of normal. n

statio pressure

rate of roll.about X+is

f~0-8*- dynezidomes~ .

rate of pitoh about Y-is

fudmmtel solution of equation (3)

[(x-x.)’~y-y~) 2+(Z-ZJ’ I +

fundamental solution of equation (k)

[(X+xJ*<ti#-(HJ’1 +
,



Wbitmxy regionof integration

surfao5enolcming region R

perturbation velm,ities In U.reotion of X-, Y-, and Z-axeS,
mspeotively

free-stream velooity

Car+mtltm coordinates 3n original spaoe variables

tawaafosmed syE3teBlof coordinates

m.
Infinitesimal used h ema3#si8

suri%me alaug whtoh streem enters lnduoed field af wing

00JIOX to arbi~ surt’aoe

direotlon oosties of ommrmal

vuriable zwpresenting either aooeleration potential,
velwi$y potential, or any of the three perturbation
~lao ity oompoments

surface cm whioh boundary mnditicms are given

perturbation velooity

variable representIng
TOIWi& pOtOIMd,

velooity ocqmnents

pzwssure ooeffIoiemt

L2ariooeffhient

potential

either aooeleration potential,
or ~ of the three perturbation

( )moment about X-is
rollln~nt o oeff10lent

qb x wing area

ac@@?vl

c1
z Y a*

d.ifferediid. operator ~ + —
)x &+P
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32 a2
differential operator

P -p -p )

- si~ denoting “finite put” of integral

Subscripts

u subscript
wing

z subscript
wing

1 subscript

o subsoript
flow

denoting value of veriable on upper surface of
.

denoting value of variable on lower surfaoe of

denoting variable of Integratim

on r denoting fundemental solution in supersonic

Superscript

superscript denoting value of variable on opposite side
of T from fixed pOhlt (xsYsz)

.

Linearized Equations and Boundszy Conditions

The linearization of the second+der differeritld equation for
oompressible fluid flow Is developed under the assumptions of thin-
al.rfoilor small~erturbat ion.theory. E the velocity veotor of the

free stieam is parallel to and in tie direction of the positive
X-axis, the resultdng clifferential equation is expressible in the
fOrm

(1)

where $2 represents a velocity potential, acceleration potitid, or ~
eny one of the perturbation velocities while M is the cons-t

. value of the free-sties 14zchnumber. Assuming the pJs.neof sPtrY

of the airfoil to lie in the XY plane, the hountiy conditions

associated with equation (1) are given for Z=O.
Moreover, if

u, v, and w represent, respeotive~, the perturbation veloc}ty
components alcmg the X, Y, and 5axes, and if the velocity of the
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free stream is T,
proportional to the

the direction cosines of any stream line are
point functions v + U(x,Y, z), P(X,Y, z),

and w(X, Y, Z) while pressure coefficient
relation

4
—=-
9 ?

Detailed discussicms of these results -be

htroducing tie affine transformations

x.x

y= AmziY

!zVFmFrz

4
~ is given by the

(2)

found in reference 4.

where we signs under the radicals are chosen so that real values
result, it fo~ows that in the subsonic case (M<l) equation (1)
reduces to

while the supersonic case (M>l) yields

The fundamental solution associated with

0 (3)

o

equation (3) is

(4)

.

,

.

.

. .
.,.

.L
-= [(X-X1)2+ (y-yJ2+ (Z-ZJ21-=
r

1

or, h terms of the original spaoe variables,
_A

*= [(X-XJ2+ P?Y-XL)2+P2(HJ21 2

where

P2 = (1-M2)

(5)

(>)

1“
. .

.
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When the wave equation ie to he considered ke fundamental solution
takes the form -

1
—a

rc

or

1—=
r. [

where

[(X-X1)2- (7-71)2-- (=1)21- * (6)

1

(X-XJ2 - j3qY-YJ 2 - pqz+)=]-= (6a)

$2 = (M2-1)

Thesefundmental solutions represent, res~ectively, in subsonic
and supersonic flow the velocity poten~ials at the point (x,y,z) or
(X,Y,Z) of unit soumes situated at the point (X=,yl,Z=) or
(x~,Y~,z~). The velocity potential of a doublet my be obtained by
taking a directional derivative of the souroe potential, the

.—.—

directicm of the axis of
.—.

the-doublet ooinc32i3@ With the direction
tiloi@whi~h’tke—~-rivative is taken. These two functltis will-’be.-.-—-..
seen to be of paramount importance when Green’s theorem is applied
to the given boundary mnditims.

.

It rem+bs now to mention the types of boundary conditions which
appem in yroblems associated with wing theory. As a convenience to
the development of the theory the normalized forms (equations (3)
and (&))of equation (1) wl12 be used and boundEmy conditions will be
,assmned lmown with respect to the x,y,z coordinate system. Retransfo~
mation totheX,Y,Z system of sxes can be made quite simply wherever
needed in application. Ih order to define the boundezy conditions,
two subscripts will be introduced: the first, u, denotes the value
of the required function on the u,per surface, @at is the limit of
the function as z approaches zsro from the positive direction; the
second, 2, denotes the value on the lower surface, that is, the
limit of the required funotitm as z approaches zero from the negative
direction.,

Using these definitions the”three boundary vel.ueproblems of
principal interest can be defined as follows:

● -M,

1. Symmetrical nonlifting atrfoil.- ti this case wu = ~ = O
over all of the xy-plane except for the regi~n occupied by the
airfoil where 2wu = +2w2 = & = f(x,y) the function being determined

.
\ , by the gecmetmy of the wing. Over all of the xy-plane, Au = O.

.

1

. .

‘, 2. Lifting plate with specified loading.- It is given that
Au”= uu-uz = O over the ~=plane exeept for the region occupied
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b~ the airfoil where Au = f(X,7), thefuuction teing
the specified loa&@. Moreover, Aw = O everywhere.

MACA TN No. 1515 .

determinedby .,

3. Lifting plate with specified cember,twist, and angle of
incidence.- Over the q-plane Aw = O everywhere. And, exoept for
the region oooupied.by the afrfoil, & = O. Over the region occupied
by the airfoil ‘w= f(x,y) where f(x,y) is determinedby the given
osmber$ twist, and angle of inoIdenoe.

It should be pointed out that the problems consideredhere cliffer
fram the usual type of boundary value problem encountered. In the
so-called Dirichlet or Neumann pro%lems, which arise in connecticm
with Laplace*s equation, the value of the normal derivative of the
funotion or of the function itself is specified along the boundary
while the Cauchy problem for second+mder partial clifferential
equations involves the lmowledge of both the function and a derlvative.
Except for one ease in the aerodynamicproblems llsted above, no
absolute values are given but rather the Jumy in the value of the
function elong the boundsxy is prescribed.

Boundary Value Problems in Purely Subsonic Flow

Since the purpose of this report Is to extendthe ooncepts of
thin-airfoiltheory which are used h subsonio theory to problems
srising in superscmio theory, sane discussionof the former will be
given to provide luoidity as well as to furnish a basis for the
snalo~ which w5JJ.be shown to exist between the methods of solution
arising In the two regties of flow.

The method whereby the solutions of the given problems can be
effected is provided by Green’s theorm whloh relates a volume
integral over a region R ,toa surface imte&ral over the surface
S enclosing R. If u, 0 are any two functions which, together
with their first and seoond derivatives,are finite and single-va.lued
throughout R, then for the subsonic ease

:., ,,’
,. ,i~ti-’

.!.~- ! J,::?.., .,. u [s
C&+$s=f’ f ,C&%-nwm

;..-
t; .’:

where the Iaplacian operator, v’ “s,+% ‘ ?%’ ‘s

(7)

introducedand the directional derivativeson the left side em
*en along the nomal n, drayn inward, to the surface S.
Identifyingnow the function‘--ti--wl&”“tiefundamental solution *

and specifyingthat $2 satisfies Laplaoe~s equation, equatim (7)
simplifies to give

.

.

.
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where

m?w%?l’==~ .. ... ‘ ‘8).:, -“L

IX the point P is ass-d to be inside the region of iirbegration,
.

it is evidsnt @at the function ~ becomesinfiniteat P, emd it is

necessary to exclude this point frcauthe region ~ formula (8) is to
apply. IWoribing a spheriml surfaoe Z with radius e shout the
point P, sad considering the integral over the two surfaoes Z and S
which enolose the regicm, it oan be”shown &t in the limit as
e —> o equation (8) beoomes

4. Jf[%9-’%?Jm
n (X,y,z) = - ~ (9)

.

The physiod’ signifioenoe of this last relation follows tmne~ately: ~

.
the “%m?l * represents a fluid souroe end the term ~(1/r) .I.I.:~~---:<:J:~’~

k ?“’”AF-=.-.-.—---- ---, --- ----------...=---—--------
~~yesen ts a doublet with its SSs ly34&=ong the normal fO ~, both

4
—.. —

source and doublet betig situated at the su@aoe point X13 yl~ 21.

The value of the function $2
as an titerzralof a souroe anQrdoublet of
the two betig...w.%,~~?~d~ct~ct~ from the respective--—....=..-..>---- boun~dues

ofSltid~.

Equation (9) expresses the vslue of O in terms of the surfaoe._._ .... . —.—

Ml
values of $2and ~ but this relation does not imply that a..-.—-. ,,J...=.-r_-.........=——.-—..—-

ULL

lmowled%_of both these variables ~S ~~ess~. ?!?Y_& -!!El@.??%@@i~
__of Q. As can be shown easily, another oondition ~ be eskblished
whioh relates the two surface

.-.

. case where P lies outside the.

the integral is equal to zero

values. Applying equation (8) to the
region of integration, It follows that

andthat Uxnd@
an

on the surface

are functionslly dependent.
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SuFfioient information’is now at hand to provide a solution for
.

tie th~irfoil~oundary value problems. Considsr the region R
bounded by the ~~1.ane and a hemiqpheriml dme of infinite radius {
lying above this plane. For all problems to which the results will
be applied, the value of o ~ be assumed equal to zero at infinity.
The cmntributlcm .ofthe surl?aoeintegral over the hemisphere is thus
zero and, frmn equation (9)

where the integration extends over the entire plane. The directicmad.
derivatives are necessarily in the dirmtion of the positive ~is
end subscriptsare a@n introduced to denote conditions on the upper
aide of the plane. Keeping P fixed and titegrating over the lower
side of the -lane, it ?OUOWS that

.

where the ne~tive direction of the namal w be Ignored sinoe the
integral is equal.to zero. Stitraoting these two equations gives
the expression

Q (X,y,z) = -Hme-s””u-@&(y-Q-1
the integml extending now only over the area 7 for which the
integrand does not vanish. Equation (10) is the basio equation
which all solutions in subsonio wing theory will be developed.
should be pointed out that the derivation prooeeded from the
assumption that the point (x,y,z) lay above the xy-plane. When
(x,y,z) lies beluu the xy~lane, however, the derlmition oan be
carried through in exactly the same manner. Suoh a development

(10)

reveals that equation (10) Is general and that no restriction need
be @posed on the position of (x, y, z) relative to the reference
plane ●

As a particular application of equation (10) consider a thin
symmdmioal airfoil at zero angle of attack and set o = @ where
@ is the perturbation velooity potential. Conditions of symmetry

.
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and tibevelgoi~ potential is given by a distribution of muroe
potentials. Zhis distiilmtion osn be immediately related to the
slope of the basio seotion by means of.the equation

(a)#u Tq dy
—=-—=—
v v u

The symetrio e,irfoi.1can also be treated by replaoing Q by
the perturbation valoolty w and in tlw ease of the thin ltiting
surfaoe with given loading the funotion Q mm be set equal to u.

. E@oylng, respectively, oondittma of synmmtry and irrotationality,

.

Boundary Value Problems in Purely Supersonic Flow

Applioatims of Greenss Norem.- The problem to be disouesed
at this po”in%“isth6 exi%nt to whioh en anal~e to equation (10) mn
be developed for supersonic flow fields. The first step in the
presentation is, once more, the introduotia of @cents theorem for
equation (1) after it has been modified to the form given by equa-
tion (4). ?!h@oying the operator

t

nZ=az a2 a2
ax’ p-p

Greenss theorem now beocmes

N’(s “Wo4XJ’(” n’”-”lJ2+ (13)
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where U fs the so-caUed conormal to the surface S and has
direction cosines equal to Ul, v=, v= such that

where nl, nz, na eze the dlrectfon cosines of the normal to the
surface S (fig. 1). (The conomel at any point x: :: :~ a
surface is the mirror hags in the plane x = xl
through the same point.) If a and Q are perfectly exbitraxy
functions, aside from satisfying the usual conditions of single-
valuedness, etc., equation (13) represents an identity and this.fact
will be useful at a later time. For lnmediate purposes, however, a
and Q will be chosen as
consideration so that

and, consequently,

solutions of the

U’a = ❑’$1=

clifferen%l equation &ler

o

(15)

The use of equations (13) end (15) depends upon an understanding
of the physical nature of supersonic flow fields. The essential.
feature of such flow is the presence of Mach cones which correspond
to the characteristic cones arising in the mathematical study of the
wave equation. In accordance with these concepts a disturbance in
the flow field can affect the fkw only Witihh its qftircone~ tit ,
is, the cone with vertex at the point of disturbance and with axis
extending in the dfrection of the undisturbed streem velooity
vector; conversely, a point in the flow field can be affected only
by disturbanceswhich emanate from points w3thin its foreccne..

When the di.sturbauoesare @neratad by a wing it is, moreover,
necessary to speak more speciffcally about the nature of the leading
edge of the wing. For all cases considered here the assumptim will
be made that the plan form is a polygcm, that is, is composed of
straight ltie segments. If the wing is swept ahead of the foremost
Mach cone, the cones arising at the leading edge will have as
envelope a wedge-shaped surface passfng through and extending back
fran the leading edge, while if the wing is swept back of the
foremost Mach oone this cone will be the surface along which the
air first experiences perturbaticms or disturbances. Thus, a
point P with coordinates x, y, z is effected by all.disturbances
lying within its forecae i’ and at the same time behind the forward

.

.
.

.

.

.

—
surface h, the nature of the
leading edge. Ih figures 2(a)

lattir s@ace
and 2(b) these

being dictated by the

surfaces, along with
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the disturbemce plane T, ere indicated for two clifferent wing plan
fOzmls. b the applications of equation (13) the volume integral is
limited to the portion of space ccmmmn to the surfaces r, ~, and T
and the surface integral.involves a discussion of conditions on these
surfaces.

Up to this point the analogy between the subsonic and supersonic
cases, insofar as the use of Green’s theorem is concerned, is quite
apparent. The principal difference which occurred was brought about by

I

the use of the true normal in the subsonic field together with the fact
that the xy-plane was covered by a hemispherical dome of infinite radius; ,
whereas, in the supersonic field, the concept of the conormal was
introduced and the volume to be considered was that enclosed within
a finite regicm. ~ continuing the anslo~, however, far more
formidable obstacles arise. To begin with, the discussion of u and
$2 over the surface in the subsonic case was relatively simple. Thus,
Wi& no limiba.tionsof generality Q col.lldbe ass~d zero at
infinity and & was specified ccnnpletelyh the xy-plane. But in
the supersonic case, ‘eJ.thoughACl can be assumed known in the xy@.eme
6nd, as will be seen later, Q mey be evaAuated on the forwexd boundary
of the region, nothing is known of Q on the forecone I’. Hence c
must be chosen properly so that the knowledge of O is unnecessary on
r. The most obvious choice of u
equation (4) which would @e u =
choice used by Voltema (reference
problems in reference 2. However,
the choice of u is not arbitrsry
supersmic source corresponding to

~
r in subsonic theory. But such a

would be a particular solution-of
O on 1’and this is in fact the
1) smd applied to aerodynamic
if the snalogy is to be maintatied
but must be the
the fundamental

1
solution, — =

rc

three-dimensional
solution

[ (=1)2 - (Y-Y1)2 - (Z-Z1)21- * becomes infinite slang the

foreccme r which has the equation (X–X1)2 - (yw=)2 - (Z-21)2 = O.

It is just this difficulty which apparently invalidates my furthe~
ante of the analogy and the prediction in advence of an aero@emic
shape from a distribution of sources and doublets in supersonic flow.
However, it is also precisely this difficulty which is overcmne by
Hademardls general methods.

Extension of analoW by =-dtS Methmi.- The full develo~
ment of Hademard*s methods cannot be given here, but a rough sketch
of his reascming will perhaps be useful. The %mis of his srguments
stems frmn equation (13) . First it is admitted that the righmd
side of equation (13) will tend to infinity as the surface S
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approaches ~ so that & is not a regularsolution to U=f) = ()

cm r. However, as has been mentioned, equation (13) still must hold
whether or not a or Q satisfy @e wave equation and thus it sti~
provides an equality. Henoe, ‘ifthe surfaoe integral tends to
infinity so also must the volume integral. Further, equation (13)
hmplies that these infinite portions just canoel since the difference
of the two integrationsmust always give zero. TO dad. with suoh a
problem quantitatively by the “usualmathematical techniques would
require the study of a limlting prooess for eaoh new boundary vslue
problem. Hadamard~s contribution was the introductionand Justlfioa- .
tion of a concept which removed the neoessity for studying the
inftilte portions involved. This conoept is best presented .by ,

means of a new notatims thus the sign ~ ‘s “ed “d ‘s
to be read “the finite part of.H

Using this conoept it is possible to show that if u were set

1
equal to —,

‘c
then equation (13) oould be written

(16)

so that the “finite parts” of eaoh side of the equation would be
equal. Such a notation would, of course, in general be meaningless
since In discarding arbitrarily a part which tended to infinity it
would be possible, by proper oombinatbns, to obtain as a remainder
z ftiite value. The faot 1s, however, that the integrals involved
in equation (16) tend to infinity only at a limit of the integration
and this limlt alws involves the foncone r. It was cmnsequentl.y
possible to devise a manipulative teobnique to handle equation (I-6)
without considering the singularities individually. It might he
mentimed, without stressing the correspondence, that a treatment of
improper Integrals is also employed in the use of CauchyCs prinoipal.
value. Ih subsonio thti-airfoil theory and liftin~llne theory
integrals of the latter type are well known in the fonm

.

.

.

,,

. .
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f

cf(xc))d%l
11= — 6X<C

o x-q

11 certainly tends to infinity as ~ approaches x but the use
of Cauchy’s prticipal value allows the very large veil.uesof the
intemmnd obtained when % is on either side of x to Just cancel
in s~ch a way that 11 is-finite and mique.

inte grsl

So again the

IL
—

12 =
‘o A(x)&c

(X&x) ‘i’

is finite and unique -d given by Hadsmard in the form

It is actuaJ2y possible to generalize the idea of “finlb part; to the
case when the exponent in the denominator is of the form J + ~ where
j is a positive integer but such a generalization fS not needed for “

aerodynamic applications and will therefore be mdtted.

In aotual calculation, the evaluation of the tntegral 12 oen
be shortened considerably. Thus, if the indeftiite integral of

J@%=
is written in the form f(x)+C then

v A(x+A(w) ~=2A(XJ
12 = lti -—

x+% a (xO-x.)‘/2 (Xo-) 1/21

[
F(x)-(a)+

2A(XJ
= linl

x+% (x~x) 1/21

It follows that if C is chosen so that

[

2A(XJ
c = — - If(x)

xz~ &=- 1
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then the expremion for 12 may be written 12 = -@(a)+O] .
When C is ohosen in this manner, the notation for the osculation
~ thus be modified to the form

==~’- ‘

where the asterisk fndioates that the upper Limit is not substituted ~
into the tidefinite integral, l?(x)+ C.

The teohutque for the oalmlatim of the finite psrt has
therefore been reduoed to three simple steps: first, the tidefinite

.

integral F(x) + C is determined, seoond, the ocmstant C h the
indefinite Integral is evaluated by means of a limiting prooess,
third, the lower llmlt of the integral Is substituted into the
indefinite integral =d a minus sign prefixed. As an emmple,
oonstder the Integral

If J
‘~~= *~

a (X#W) f3/E
a (~2_x2) ‘/2

h thfs ease l!’(x)+ C =
1

—+ O end
(%*=) 1/= .

so that, fmm.y,

=-b’(a) +Cl = ‘1
(XO%W W

With the aid of this -tifloe the anslogy between the subsonio
and supersonic oases oan he aontd.nuedwith relativs ease. Thus, in

equaticm (16) the rightid meniberis zero provided we exolude the
point P frau the volume of integration. This oan be done most easily
by limiting the 3nte~atlon to the XL = ocmstant pleme, a distance E
upstieam frcm P. The portion of this plane intersectedby the ome,

1-

end thus the aeotiun uvep whioh the inte~ation must be carried, will ‘
be denotid by z (fig. 3). .
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. As drawn, figure 3 shuws a moss seotion in a yl = constant
phne for the special ease when P is located directly behind and
above the foremmt disturbance. Applying equaticm (16) to the
regions e30ve and below the disturbance surfaoe T (plane of the
airfoil) yields the two equations

t:

‘- JIJfwi) -% la

and

(17)

(m)

where the prime indioates the s&aoe velue of Q on the opposite
side of T ‘frcm E.

The integration over Z oan be oomputed
For oonvenienoe, consider P to be the origin;
since the oonormel is in the xl direotim and

——

for e very smd.1.
then it follows that
the area element oan

be written ydyd9 where 8=aroten~ =d 7=-, tie

right side of equation (17) will give
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.

+2Ta$2[x,y,z) ~

f

y dy

b o /6= - 7= 1
= am(x,y,z).

P, $2(x,y,z) can be determinedHence the value of Q at the point
from equation (17) with the restrictim @plied by equation (18).
I%rther, since only the “finite p=t” is considered, the integration
over I’ yields zero and the two equations cozibine to give

The only renalning difference between the subsmic solution for the
distribution of sources em. doublets, equation (10), and the supe~
sonic solution, equation (19), is the integration over surface h.
The detailed discussion of the contribution of the surface integrals
over h wiU. be deferred to Appendix A. It must suffice for the
present to remark that in all
equation (19) - either zero
fOllows that

applications the Integrals over k in
or carobine to give zero. It therefore

.

,.



.

.

S2(x,y,z)= -: IJL[W%9- ‘nu+z)k(+) 1 ‘lQ1

and the complete analogue to equation (10) has been established
the use o~ the oonoept of finite part.

APPLICATIONS

Interpretation of Previous Results

(20)

through

problems to whioh equation (20)As a means of indicating tie various
oan be applied, three previously published results will he discussed.
These applications include, first, the eqression for the perturbation
velooity potential of a symmetrical n~t~ airfoil (referenoe 6),
second, the calculation of pressure distribution over a semi-infinite
wedge with leading edge swept lmok of the foremost lkoh oone
(reference 5) and, third, the integral equation method for determining
the load distiilnztionover a lifting surface of arbitrary slope
(reference 7).

As in the case of equation
represent velocity potential 14
wing at zero angle of attack.

induoed vertical velocities on

respectively. Moreover, O ~ -

that, since wu - Wz = 2 W’u,

(IL)for subsonic flow, let 0
end ccmsider the ease of a symmetrical

W2s where wu and wl are

the upper end lower surfaces,

#~ = O for the symmetrical ease so

The integral in this equation is finite at r so the finite part
sia may be disregarded end

(21)
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This equation agrees with results given by Puckett

As another example consider the solution used
in reference !5for a nonlifting symmetrical wing.

in reference 6.

byR.T. Jones
Setting Q

equal to w in equation (20)
are related by the expression

u=

it follows that

and using the fact that w and u

a Zwti

fz.

For a wedge swept behind the forwrdhfach cone and having as the
equation of its leading edge the relation xl = myl, the
expression for u may be written in the form

(22)

where

x )2 +-z=(m+-l)-- Y-
Yl=m

1
-L

—- 1
~2

Performing the integration with respect to xl, it follows that

f

T@ z Y~r -(x+ dy.
u=—

‘ axmz”o [(y–yI),+ z,] (x - +)2- (y-y~)~ - z,

.

●✍

✎

and, sfter reversing the order of integration
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,

‘*.

.=>&f..$’_. -(x:::;+%,
[(Y-Yl)2+m J(=

(x -~) 2-(Y-Y1) 2

where k = 1 for x>~ and -1 for x<#. “Telcingthepartial
m

derivative with respect to x and noting that the value of the logarithm
at the upper lhit is zero, the velue of the induced velocity is

and integration yields the find result

~n (x-my) -J(l-m2)(=2-z2-z2)

‘=%+= J(IIIX- y)2 + 22 (1 -m2)

4~ by -~
Wu

Denoting pressure coefficient end setting ~ equel

(J

.

to = the slope of the surfaoe, this may be writbn
o

Equation (23)gives the pressure ooefficient at any point in the
field produced by a wedge swept behind the Mach cone. When z is
set equal to zero the pressure distribution over the wedge itself is
determined and the equation corresponds exaotly witi equation (1.2)
of re$er9noe 5*

.
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When loading is to be prescribed over a thin lWting s~aoe, fl
may be assumed equal to the perturbation velooity u. A direct
oonsequenoe of this assumption is that h equation (20)

‘since,from cmdithns of irrotatitiity,

By definition

and load distribution in ooeffioient form, Z!Cp, is given by the
relation

&p= f%_%&
~ q

so that

2“2 % ~;LCp=-T+ T=_

Equation (20) mm therefore be written in the fo?m

;=-;lj’ AL’P&&)til@l

1

p

z &xl dyl
‘E T&p

4/[ (-d’ - (yyy~)a - z’]”

If equation (24) is transformed to the original spaoe
the relatkm for u is .

(24)

variables,
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.

.
I Equati~ (25) iS valid tor arlitrary ylan forme with Imom load

dlstrilnltions. Particular exsm~les which may be worked out with
relative ease are the lifting surfaces c+ constant load.. Once
u is known the value of w oan be determinedfiat.the Integral

and from w the ordinate z of the surface as a funotion of x and
y is given by

I

x
z ~ &o
= 2.e. T

where 2.e. denotes the leading edge. A diSCUSSi~ C& t373~ZOilhl,
reckngular, and biangular PM forms with oonetant load- is
given in referenoe 2 although the method of derivation is clifferent.

3Merest in constantly load&d wings has been based primrily
on the fact that h certain oases they can be combined to produce
surfaces of given oemiber. !Ihus,a superposition of Ian3pezoidalplan
forme of variable rake, the constant loadlng over eaoh &apezoid
being a funotion of its rake angle, can be used to produce a flat
plate of trapezoidal or rectangdar plan form at am arbitmary angle
of attack. b this case the loading as a function of rake angle is
determined so that induced vertical velocity is kept constant. For
problems in conioal flow a lifting elemnt can be constructed by
subtracting from a constantly loaded right triangle with emgle of
sweep equal to 5 the mnstantly loaded right triangle with sweep
angle equal to 5- d5, The resultmt element carries a constant
load and has a swee~ angle equal to 5. By sumning these elemmts
it is possible to find the load distribution as a function of 5
suoh that certain flat lifting surfaces at emgles of attack are
formed. In referenoe 2, triangular wings swept back of the I&ch
mne were studied by this method for arbitrary amgles of yaw. Brown
(reference 7) has used this same lifting element to study the more
restrictive ease of the spnetrical triangular wing.

A brief Uscussfon of differences existing between the methods
for producing the ewepkback lifting element will shed some light
on the various lines of attack. The approach used in reference 2
is essentially mthematioal in that a partimlar solution of the
partial differential equation is used in conjunction with Green’s
theorem to eatisfy the boundary conditions of the problem. The
yrlnoipal criticism of such a method is that the physical
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interpretddm is missing. The use of equatlcm (25), however,
removes all suoh oritioisms for preoisely as In the case of
tioampressible flow the ltfting element 1s oreated by distributing
doublets over the wing. ti Brownts solutim it was neoesseryfor
hti to determtne first a line of sources by means of an integraticm
along the line emd then to form the doublet Itne by differentiating
along the normal to the lfne. The order of differentiationfor
inomnpressibleflow is immaterial, shoe the Mmits in the integral
are independent of the position of the point P at X, Y, Z. Super-
sonic flow destroys this property and it is only titer the introduc-
tion of the cbncept of “finite partn that the derivative of an Integral
may be written as the integral of the dlfferential ooefficient of the
integramd. Equaticm (25) thus stipllfies the anal@s and at the
same the maintains the anslo= witi previous work.

Load Distrlbutim for Rollfng Wing

The usefulness of equation (20) is not at all restricted to a
synthesis of previously lnuwn solutions. As an example of its
genem.lity oonsider its application to the problem of the rolling
wing with leading edge swept ~ead of the Mch oone. Figure 4
shows the boundary conditIons involved. The value of w is
speoifled over the wing and, sinoe the Maoh cone is behind the
leading edge, the value of the perturbation velocities u, v, and.w .
are of oourse zero ahead of the leading edge. Assume for the
mament that a symmetriosl body at zero sngle of attaok Is considered.
It follows that if $lU= Wu and O ~ = WZ then equation (20) cem
be written in the form

(26)

since, for reasons of synmwtry, the normal gradients of w on the
two surfaoes are equal. Using now the fact that the Maoh cone is
behind the lea- edge then the pressure over the upper surfaoe is
independent of the shape of the lower surface and equation (26)
may be applied direotly to the rolllng flat plate if Wu fs
dete~ed frcm the given induoed velooity on either the upper or “
lower surfaoe. This method of approaoh, of murse, limits the
solutim to oases where tie leading edge is ehead of the Mach cone.

.

~ the rate’of roll is given’as P radians per seoond then
2w~ = 2PY1 and equation (26)becomes
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The area T in equation (27) is that contatned between the leading
edge and the trace of the foreuone on the X&plane. Figure a(a)
shows tie omfiguration for three traces corresponding to forecones
from the potits 21, P=, snd 29 . The region containing the
point P2 is distinguished frcm that containing P1 and PS by
the faot that T for P= lies ahead of tie Mach oone from the apex
and, furthermore, entirely an the ri~t of the xl axis. The
regions correspcmding to PI and Pa differ in the fact that when
integrating fram a to Z to find U, the upper Mmit of the
integral in the first case is the Mch cone X2 - @%2 - ~?Z2 = O
whereas in the latter case the upper limit is the leading-edge

wedge z6—

= ‘f””‘(b))”
The solution must be carried out separately for each of these
regions but only the details for the region corresponding to P1
need be given here since the others are similar.

It follows that the tiduced velocity u at the point P is
given as the sum of the triple integrels.

.

aPz
o *

J f f

p%oax=

‘=x;=
dzo YldYl

F-
A(l,ZO) - ~ [(x-xl)=+2(Y-YL)=+%.= 1s/2

(s8).
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where A(k, Zo) Is the value of Y1 determined.by the intersection
“of the forecone with the leading edge on the right and left sides
with k equsl respectively to 4 and +L. See fig. 5(a).) ‘Ihus

-(k~+$%], +k$~ (X + k :)2 + Zo2& - P2)
A(k,Zo) = .

J.
—- $2m2

After reversing
.

the order of integration end integrating with
it follows that

,

I P
u=, k—

2X

Moreover, sfnce
derivative with

ho

f
[- “-~ “

(X+k~) - ~(X+k~)2-i32(Y-Yz) 2&Z2
Y1dY12n

G
A(k,Z) (X+k~) +’ (X+4) ~2(Y-Yl) 2~%2 1

the integrand is zero
respect to X oan be

at Y1 ~ A(k,Z) the
taken inside tie inte~al emd

.,

.

..
. .

Iu=~ “

k= -1,1’
~k) 2- P2 (Y’-Y1)2- p= Z2

Integrating in this equation and
induced’velocity u is given by

combining terms it follows that
the expression “

(29)
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Setting Z = O in equation (29),pressure coefficient
Ap 2U
—=. — is given by the e~ression

2P_ f- I&Y-x rmf3%-X7
2!—m

1
- arc sin

1
—1

e (m2j32-~) 0= p(niz

lnjfir+x
[
mp~+x

1(m2j32_ ~)g/2 ‘o ‘h m +

27

when x> $Y ●

This mlubion holds in both regicms oontaln~g the points PI
and P~ . However, jn the region aiieadof the Mach oone-but f3tili
on the wing (region oorrespondlng to P2) it is easy to show that

(31)

where b for~ <X< ~Y. Figure 6 shows a spazncke plot of 4—
~

m.2 ~d~=l.

Equaticms (30) and (31) provide suffioient informatitm for the
aalalatiau of the stabili%~ derivative for damping in roll, CZ*.

lhtegratmn ‘ofthe load distiibuticm yields“theresult that .

a~z
c2p

1
a—m .—

a(m/2v) 3fI

Load Distilbution for Pitching Wtig

Another s*le application of equation (20) is found in the
solution to the problem of the pitohing wing. Figure 7 shows the
boundary condition involved whiah la that the vertical induced
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.
velooity be a limear funotion of Xz. If Q is the rate of pitoh in
radians per seoond, then w = QXl on the wing. Again the solution
Is obtained only for wings whioh have leading edges swept shead of
the Maoh oone. (Although solutions can be obtained for leading edges
swept behind the Mach cone, they involve integral equations and do
nothing to U1.ustrate further the direct methods of this report.)

.

h the rold.ingwing case, 0 was set equal to perturbation
velooity w and as a result a distribution of doublets was used
h equations (27) and (28). As an example of the manner in which
souro=ink distributionsmay be used for the same type of problem,
equation (22) will be applied in the present case. Sinoe the wing
is swept ahead of the foremost Mach cone, fnduoed effects on the
upper and lower surface are independent and

@ =-: !1 QXl (IXZdY= ‘

J(x-xl)’ - p’ (Y-Y.)2- J32z’
(32)

Again three regions containing the points Pl, P2, emd P= =e
distinguished (fig. 5(a)) snd the solutions will be derived only
for the region containing PI. titegrating first with respect to
Y1 end then differentiatingwith respect to X yields

(33)

where
x- 2&kY] 2 + 22 (M1’p’)

E(k,Z) = m --

Considering the limit

(since ~ = -~)

1 - nlzflz

as z —> O and titegrating gives:

.r -

.
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n@4x12132)-Y
-—.osin =.

x Lx)BY

nix(%n2J32)+Y
+

31 “c +2%) (34)

X’ormul.a(34) is valid for the regicms P1 and P~ of figure 5(a).
For the region 22 the solution is:

(35)

Equati~ (~) snd (35)
calculation of the stability

~rovide sufficient
derivative for the

‘dues‘f (:) (%)
as determined frcuuthese equations axe

information for the
damping in pitch ~.

plotted in figure 8 for m = 2 and j3= 1.

Ames Aeronautical laboratory,
National Advisory Cozmnitteefor Aeronautics,

Moffett Field, Calif. .

AI?EENDIXA

Discussion of Conditions on Surface ?U

By definition L is the surface on which the streamlines of the
first ercerience pressure disturbances, that 1s, the surfaceflow ...-

along which tie stie~-f irst becomes aware of the existence of the
wing. Figures 2(a) and 2(b) were introduced to show the nature of
the configurations involved for two different plen fornm. It is
apperent that when the wing is swept ahead of the foremost Mach cone
the wedge-like form of X is creparable to the wedge appearing in
purely tiimensional problems while the wing swept back of the Mach
oone has for its surface a conical surface snd thus msy be thou@t of
as involving a purely three~imensionel problem.
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In order
to impose the

to determine the value of @ on X it is sufficient
condition that the tangential component of %locity is

mntinuous across A . Suoh a condition represents no essential-
restriction since it is an immediate consequence of continuity of
mass flow and continuity of the tangential component of momentum
aoross the surface. As a result of this condition, huwever, it
follows that the tangential ccmponent of the perturbation velocity
is zero on the downstream surfaoe of 1. since i.tis obviously zero
on the upstream surface. Moreover, velocity being equal to the
gradient of the velooity potential the perturbaticm-veloclty potential
must be equal to a constant on x . But an arbitrary constant can be
added or subtracted from the velocity potential so that with no loss
of generality the value of O m X can be assumed equal to zero

and, since the conormal lies on the surface A , b
/’x

is also zero.

The complete analogue to equation (10) has nw been dsveloped for

w) ‘ “
When Q is equal to one of the perturbation-velocity ‘ ‘

components, it is obvious that boundary conditimm over A and 7
cannot be considered to be absolutely arbitrary since it is
necessary to Include the added restriction that the resultant
potential G also satisfies the equation

Considering first the
oone, it folluws that

f

x
#= u(xl,y,z)dx~

GF

case where the wing is swept behind the Maoh

.

.

,,

?

z

&-= W(x>yszl)dzl
x=-y=

.
●

.

.
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sad, after evaluating the pertial derivatives of Q and substituting
in the given clifferential equation, direot calculation leads to the
conclusion that cm h the following clifferentieJ.equations hold

2y

2x

2x

where uL, TX= end. WI
The general solutionsof

*+2Z*+U1=0

ay

—+2A+..=O
av~

ax az

dx dy

exe the values of u, v, =a w on h.
these linear partiel differential equations

oan ie written as follows

o L) L)‘==*=fl5 ‘ ““J+=f’ =‘ ‘=’- ‘sE
It has been stated, however, that the tangential component of the
total perturlxition-velooityveotor vanishes on X , or, fn
mica terms

I

.

Zul + mvl + nw~ = O

.

where Z~ m, n are direction numibersof any tangent to A and
therefore sat~y the relation

‘“2x-w-nz=o

Substituting the bown expressimm for ul~ Vl= WX, it follows that

or, using a &Mf erent notation,
.
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. 24)+:4 )+:’43-”
(M)

Considi3rnow the fqpial oa.fmwhen 2 = O and m = - ~. TM3er

these oonditione

so that

Slnoe the variables ~ end ~ are separated; the solutfon of this

equat@n may be written -

0
F2 ;

6)
~ x

=Kand~8 =K -
Y

where K is a constaat. Returning now to the case where 2, m, and
n ere in the ratio x: y: z, direct substitution Into equation(A2) -
gives

-.

so that

and

.
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!Chisequation can, however, be written in the form

frcm which it follows that K = O and F1=F==F==O. All
perturbation velooity components ere seen to be zero, consequently
equation (Al)is valid for all cases in which the wing is swept back
of the Mach cone.

A discussion of conditions on the surface A will next be given
for the case where the leadlng edge of the wing lies along the -is
(flg. 2(a)) and where O represents u or w. The perturbatkn-
velocity potential # mey be given by the relatlcm

f
Q(x,y,z) = ●: U(xl,y,z) &l

where the plus and minus signs in the limit apply,respectively,to
conditions above and below the ~leme. Sinoe O must satisfy
the baaIc clifferential equation, an added restriction is imposed on
u end as a result of this

where UI is the velue of

condition it cen be shown that

&L=o
hz

u
of the ~dge. It fol.lowsthat
are

W = fl(%Y)

on either the lower or upper surface
the values of u on the two surfaces

and, sinoe the solution is independent
proportional to z in both cases, the

U1 = fl(y) and ul.

= fz(x,y)

of z, end X iS
final eqressions are

= fz(y)

IT Q (X,y,z) is deftied as sn integral involving w, the same type
of analysis leads to the conclusion that w on the two surfaces oan
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e~remed as funoticma of y alone. Perturbation velooity
not be considered for this time of leading edge sinoe the

inoluaion of u and w oovers all ;-kmon~ ueed-bo~–deryconditions.

It remains to substitutethe results just obtained Into equa-
,thn (19) in mder to study the contribution of the integrals over
h. Apparently anly one tam in eaoh in’tegrandneed be considered
sinoe the conon?ialis perpendicular to the y+xcis and the gradient of
o in that dirwotion vanishes. As a preltihary step to setting up
the integrals it is oonvenient to introduoe a new coordinate system
x“, yt’, Ztt whioh is obtained by rotating the exial system about the
pis so that the xt’-and z“-axes lie respectively in the lower and
W@r mdw planes while the y“=axis ooinoides with the y-axis.
The transformation of variahlea ia

When Q = u, the last two titegrals in equation (19) mV now be
written

.

&

J

Y+J=i f~(yl)dyl
‘k

r -m
~ome~$)b”

.

.

Substituting for rc> this expression beoomes
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dzfl 1
.

(Y-71)242 -+ 2’1)2

or

It is apperent that if fl( ) = -
b)

fz(y) the integrals oombine to
give zero so that equation may again be used in aU oaloulations;
moreover, the same cmdition applies when 0 = w. The assumption
that fl(y) = - f~(y) is equivalent to postulating that in &U. oases
fz(y) and -f2(y) exe odd functions of y. h applicatim, however,
this property is always maintained.

It remains finally to consider the ease when the leading edge
of a wing is swept ehead of the I&ch cone end when ~ Is a
perturbation-velooity component. As a meens of avoiding unnecessary
cczupllcatim in treating the problem it Is possible to substitute
first the trem3formatin (reference 5)

ig* -y+mx

n= -z+~

K/4m=z

where the leading e- haa the equaticm y = mx, z = 0, and
m >1. Direct calculation shows that the basic differential eqw-
tion and the Mach cone are invariant under the transformation and
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that in the new obliquecoordinate system the leading edge lies
elcmg the ~?.s while the plaaes of the wedge beoame

Beoause of the invariant properties of the transformaticm, and the
fat that the z = O plane is fixed, equation (19) la applicable
direotly to the boundary value problem for the swept wing in the
new ooordinate system. The treatment of the integralI3over h can
therefore be developed al.gebraimlly
applied to the previous case, henoe
the lfnes

in exaotly the
uandwsre

Oonst

same mannerthat
Constmt along

end, again, if ocmditicms of skew symetry are maintained shove and
belbw &e -z = ~ = Cl plane the Int%gratlon over the surfaoes k
oanoel. !l!husequation (20) is seen to be valid for 0 equal to
perturbatiozxvelooity potentle3.or perturbation velocity for all
types of striaght leading-dge configurations. And this is the
camplete ~logue of the subsonio theory.
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